#practiceLinkDiv { display: none !important; }Adunk egy egész számok tömbjét és egy tartományt, amelyre meg kell találnunk, hogy az ebbe a tartományba eső résztömbnek vannak-e hegy formájú értékei vagy sem. Az alrendszer minden értékét hegy formájúnak nevezzük, ha minden érték növekszik vagy csökken, vagy először nő, majd csökken.
Formálisabban egy alrendszer [a1 a2 a3…aN] hegy formájúnak mondjuk, ha létezik K 1 egész szám<= K <= N such that
a1<= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= aN
Példák:
Input : Arr[] = [2 3 2 4 4 6 3 2] Range = [0 2] Output : Yes Explanation: The output is yes subarray is [2 3 2] so subarray first increases and then decreases Input: Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7] Output: Yes Explanation: The output is yes subarray is [2 4 4 6 3 2] so subarray first increases and then decreases Input: Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3] Output: no Explanation: The output is no subarray is [3 2 4] so subarray is not in the form above statedRecommended Practice Mountain Subarray probléma Próbáld ki!
Megoldás:
- Hozzon létre két extra hosszúságú mezőt n balra és jobbra és egy extra változó lastptr
- Inicializálás balra[0] = 0 és lastptr = 0
- Haladjon át az eredeti tömbön a második indextől a végéig
- Minden indexnél ellenőrizze, hogy nagyobb-e az előző elemnél, ha igen, akkor frissítse a lastptr az aktuális indexszel.
- Minden indextárhoz a lastptr be balra [i]
- inicializálni jobb[N-1] = N-1 és lastptr = N-1
- Haladjon át az eredeti tömbön a második utolsó indextől az elejéig
- Minden indexnél ellenőrizze, hogy nagyobb-e, mint a következő elem, ha igen, akkor frissítse a lastptr az aktuális indexszel.
- Minden indextárhoz a lastptr be helyes[i]
- Most dolgozza fel a lekérdezéseket
- minden lekérdezéshez l r ha jobb[l] >= bal[r] majd nyomtasd ki igen más nem
// C++ program to check whether a subarray is in // mountain form or not #include using namespace std; // Utility method to construct left and right array int preprocess(int arr[] int N int left[] int right[]) { // Initialize first left index as that index only left[0] = 0; int lastIncr = 0; for (int i = 1; i < N; i++) { // if current value is greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // Initialize last right index as that index only right[N - 1] = N - 1; int firstDecr = N - 1; for (int i = N - 2; i >= 0; i--) { // if current value is greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // Method returns true if arr[L..R] is in mountain form bool isSubarrayMountainForm(int arr[] int left[] int right[] int L int R) { // return true only if right at starting range is // greater than left at ending range return (right[L] >= left[R]); } // Driver code to test above methods int main() { int arr[] = {2 3 2 4 4 6 3 2}; int N = sizeof(arr) / sizeof(int); int left[N] right[N]; preprocess(arr N left right); int L = 0; int R = 2; if (isSubarrayMountainForm(arr left right L R)) cout << 'Subarray is in mountain formn'; else cout << 'Subarray is not in mountain formn'; L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) cout << 'Subarray is in mountain formn'; else cout << 'Subarray is not in mountain formn'; return 0; }
Java // Java program to check whether a subarray is in // mountain form or not class SubArray { // Utility method to construct left and right array static void preprocess(int arr[] int N int left[] int right[]) { // initialize first left index as that index only left[0] = 0; int lastIncr = 0; for (int i = 1; i < N; i++) { // if current value is greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // initialize last right index as that index only right[N - 1] = N - 1; int firstDecr = N - 1; for (int i = N - 2; i >= 0; i--) { // if current value is greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // method returns true if arr[L..R] is in mountain form static boolean isSubarrayMountainForm(int arr[] int left[] int right[] int L int R) { // return true only if right at starting range is // greater than left at ending range return (right[L] >= left[R]); } public static void main(String[] args) { int arr[] = {2 3 2 4 4 6 3 2}; int N = arr.length; int left[] = new int[N]; int right[] = new int[N]; preprocess(arr N left right); int L = 0; int R = 2; if (isSubarrayMountainForm(arr left right L R)) System.out.println('Subarray is in mountain form'); else System.out.println('Subarray is not in mountain form'); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) System.out.println('Subarray is in mountain form'); else System.out.println('Subarray is not in mountain form'); } } // This Code is Contributed by Saket Kumar
Python3 # Python 3 program to check whether a subarray is in # mountain form or not # Utility method to construct left and right array def preprocess(arr N left right): # initialize first left index as that index only left[0] = 0 lastIncr = 0 for i in range(1N): # if current value is greater than previous # update last increasing if (arr[i] > arr[i - 1]): lastIncr = i left[i] = lastIncr # initialize last right index as that index only right[N - 1] = N - 1 firstDecr = N - 1 i = N - 2 while(i >= 0): # if current value is greater than next # update first decreasing if (arr[i] > arr[i + 1]): firstDecr = i right[i] = firstDecr i -= 1 # method returns true if arr[L..R] is in mountain form def isSubarrayMountainForm(arr left right L R): # return true only if right at starting range is # greater than left at ending range return (right[L] >= left[R]) # Driver code if __name__ == '__main__': arr = [2 3 2 4 4 6 3 2] N = len(arr) left = [0 for i in range(N)] right = [0 for i in range(N)] preprocess(arr N left right) L = 0 R = 2 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') L = 1 R = 3 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') # This code is contributed by # Surendra_Gangwar
C# // C# program to check whether // a subarray is in mountain // form or not using System; class GFG { // Utility method to construct // left and right array static void preprocess(int []arr int N int []left int []right) { // initialize first left // index as that index only left[0] = 0; int lastIncr = 0; for (int i = 1; i < N; i++) { // if current value is // greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // initialize last right // index as that index only right[N - 1] = N - 1; int firstDecr = N - 1; for (int i = N - 2; i >= 0; i--) { // if current value is // greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // method returns true if // arr[L..R] is in mountain form static bool isSubarrayMountainForm(int []arr int []left int []right int L int R) { // return true only if right at // starting range is greater // than left at ending range return (right[L] >= left[R]); } // Driver Code static public void Main () { int []arr = {2 3 2 4 4 6 3 2}; int N = arr.Length; int []left = new int[N]; int []right = new int[N]; preprocess(arr N left right); int L = 0; int R = 2; if (isSubarrayMountainForm(arr left right L R)) Console.WriteLine('Subarray is in ' + 'mountain form'); else Console.WriteLine('Subarray is not ' + 'in mountain form'); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) Console.WriteLine('Subarray is in ' + 'mountain form'); else Console.WriteLine('Subarray is not ' + 'in mountain form'); } } // This code is contributed by aj_36
JavaScript <script> // Javascript program to check whether // a subarray is in mountain // form or not // Utility method to construct // left and right array function preprocess(arr N left right) { // initialize first left // index as that index only left[0] = 0; let lastIncr = 0; for (let i = 1; i < N; i++) { // if current value is // greater than previous // update last increasing if (arr[i] > arr[i - 1]) lastIncr = i; left[i] = lastIncr; } // initialize last right // index as that index only right[N - 1] = N - 1; let firstDecr = N - 1; for (let i = N - 2; i >= 0; i--) { // if current value is // greater than next // update first decreasing if (arr[i] > arr[i + 1]) firstDecr = i; right[i] = firstDecr; } } // method returns true if // arr[L..R] is in mountain form function isSubarrayMountainForm(arr left right L R) { // return true only if right at // starting range is greater // than left at ending range return (right[L] >= left[R]); } let arr = [2 3 2 4 4 6 3 2]; let N = arr.length; let left = new Array(N); let right = new Array(N); preprocess(arr N left right); let L = 0; let R = 2; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form' + ''); else document.write('Subarray is not ' + 'in mountain form' + ''); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form'); else document.write('Subarray is not ' + 'in mountain form'); </script>
Subarray is in mountain form Subarray is not in mountain form
Csak két bejárásra van szükség, így az időbonyolultság O(n).
Két extra n hosszúságú térre van szükség, így a tér összetettsége O(n).