logo

Határozza meg, hogy az alrendszer hegy alakú-e vagy sem

Próbáld ki a GfG Practice-n ' title= #practiceLinkDiv { display: none !important; }

Adunk egy egész számok tömbjét és egy tartományt, amelyre meg kell találnunk, hogy az ebbe a tartományba eső résztömbnek vannak-e hegy formájú értékei vagy sem. Az alrendszer minden értékét hegy formájúnak nevezzük, ha minden érték növekszik vagy csökken, vagy először nő, majd csökken. 
Formálisabban egy alrendszer [a1 a2 a3…aN] hegy formájúnak mondjuk, ha létezik K 1 egész szám<= K <= N such that 
a1<= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= aN  

Példák:  

  Input : Arr[]   = [2 3 2 4 4 6 3 2] Range = [0 2]   Output :    Yes   Explanation:   The output is yes  subarray is [2 3 2] so subarray first increases and then decreases   Input:    Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7]   Output:   Yes   Explanation:   The output is yes  subarray is [2 4 4 6 3 2] so subarray first increases and then decreases   Input:   Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3]   Output:   no   Explanation:   The output is no subarray is [3 2 4] so subarray is not in the form above stated
Recommended Practice Mountain Subarray probléma Próbáld ki!

Megoldás:  



    Megközelítés:A probléma több lekérdezést tartalmaz, így minden lekérdezéshez a megoldást a lehető legkisebb időbonyolítással kell kiszámítani. Tehát hozzon létre két extra szóközt az eredeti tömb hosszával. Minden elemnél keresse meg a bal oldalon az utolsó indexet, amely növekszik, azaz nagyobb, mint az előző eleme, és keresse meg a jobb oldalon lévő elemet, amely tárolja a jobb oldalon az első indexet, amely csökken, azaz nagyobb, mint a következő eleme. Ha ezek az értékek minden indexre állandó időben számíthatók, akkor minden adott tartományra konstans időben adható a válasz.Algoritmus: 
    1. Hozzon létre két extra hosszúságú mezőt n balra és jobbra és egy extra változó lastptr
    2. Inicializálás balra[0] = 0 és lastptr = 0
    3. Haladjon át az eredeti tömbön a második indextől a végéig
    4. Minden indexnél ellenőrizze, hogy nagyobb-e az előző elemnél, ha igen, akkor frissítse a lastptr az aktuális indexszel.
    5. Minden indextárhoz a lastptr be balra [i]
    6. inicializálni jobb[N-1] = N-1 és lastptr = N-1
    7. Haladjon át az eredeti tömbön a második utolsó indextől az elejéig
    8. Minden indexnél ellenőrizze, hogy nagyobb-e, mint a következő elem, ha igen, akkor frissítse a lastptr az aktuális indexszel.
    9. Minden indextárhoz a lastptr be helyes[i]
    10. Most dolgozza fel a lekérdezéseket
    11. minden lekérdezéshez l r ha jobb[l] >= bal[r] majd nyomtasd ki igen más nem
    Végrehajtás:
C++
// C++ program to check whether a subarray is in // mountain form or not #include    using namespace std; // Utility method to construct left and right array int preprocess(int arr[] int N int left[] int right[]) {  // Initialize first left index as that index only  left[0] = 0;  int lastIncr = 0;  for (int i = 1; i < N; i++)  {  // if current value is greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }  // Initialize last right index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;  for (int i = N - 2; i >= 0; i--)  {  // if current value is greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  } } // Method returns true if arr[L..R] is in mountain form bool isSubarrayMountainForm(int arr[] int left[]  int right[] int L int R) {  // return true only if right at starting range is  // greater than left at ending range  return (right[L] >= left[R]); } // Driver code to test above methods int main() {  int arr[] = {2 3 2 4 4 6 3 2};  int N = sizeof(arr) / sizeof(int);  int left[N] right[N];  preprocess(arr N left right);  int L = 0;  int R = 2;  if (isSubarrayMountainForm(arr left right L R))  cout << 'Subarray is in mountain formn';  else  cout << 'Subarray is not in mountain formn';  L = 1;  R = 3;  if (isSubarrayMountainForm(arr left right L R))  cout << 'Subarray is in mountain formn';  else  cout << 'Subarray is not in mountain formn';  return 0; } 
Java
// Java program to check whether a subarray is in // mountain form or not class SubArray {  // Utility method to construct left and right array  static void preprocess(int arr[] int N int left[] int right[])  {  // initialize first left index as that index only  left[0] = 0;  int lastIncr = 0;    for (int i = 1; i < N; i++)  {  // if current value is greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;    for (int i = N - 2; i >= 0; i--)  {  // if current value is greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if arr[L..R] is in mountain form  static boolean isSubarrayMountainForm(int arr[] int left[]  int right[] int L int R)  {  // return true only if right at starting range is  // greater than left at ending range  return (right[L] >= left[R]);  }    public static void main(String[] args)  {  int arr[] = {2 3 2 4 4 6 3 2};  int N = arr.length;  int left[] = new int[N];  int right[] = new int[N];  preprocess(arr N left right);  int L = 0;  int R = 2;    if (isSubarrayMountainForm(arr left right L R))  System.out.println('Subarray is in mountain form');  else  System.out.println('Subarray is not in mountain form');    L = 1;  R = 3;    if (isSubarrayMountainForm(arr left right L R))  System.out.println('Subarray is in mountain form');  else  System.out.println('Subarray is not in mountain form');  } } // This Code is Contributed by Saket Kumar 
Python3
# Python 3 program to check whether a subarray is in # mountain form or not # Utility method to construct left and right array def preprocess(arr N left right): # initialize first left index as that index only left[0] = 0 lastIncr = 0 for i in range(1N): # if current value is greater than previous # update last increasing if (arr[i] > arr[i - 1]): lastIncr = i left[i] = lastIncr # initialize last right index as that index only right[N - 1] = N - 1 firstDecr = N - 1 i = N - 2 while(i >= 0): # if current value is greater than next # update first decreasing if (arr[i] > arr[i + 1]): firstDecr = i right[i] = firstDecr i -= 1 # method returns true if arr[L..R] is in mountain form def isSubarrayMountainForm(arr left right L R): # return true only if right at starting range is # greater than left at ending range return (right[L] >= left[R]) # Driver code  if __name__ == '__main__': arr = [2 3 2 4 4 6 3 2] N = len(arr) left = [0 for i in range(N)] right = [0 for i in range(N)] preprocess(arr N left right) L = 0 R = 2 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') L = 1 R = 3 if (isSubarrayMountainForm(arr left right L R)): print('Subarray is in mountain form') else: print('Subarray is not in mountain form') # This code is contributed by # Surendra_Gangwar 
C#
// C# program to check whether  // a subarray is in mountain  // form or not using System; class GFG {    // Utility method to construct   // left and right array  static void preprocess(int []arr int N   int []left int []right)  {  // initialize first left   // index as that index only  left[0] = 0;  int lastIncr = 0;    for (int i = 1; i < N; i++)  {  // if current value is   // greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right   // index as that index only  right[N - 1] = N - 1;  int firstDecr = N - 1;    for (int i = N - 2; i >= 0; i--)  {  // if current value is   // greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if  // arr[L..R] is in mountain form  static bool isSubarrayMountainForm(int []arr int []left  int []right int L int R)  {  // return true only if right at   // starting range is greater   // than left at ending range  return (right[L] >= left[R]);  }      // Driver Code  static public void Main ()  {  int []arr = {2 3 2 4  4 6 3 2};  int N = arr.Length;  int []left = new int[N];  int []right = new int[N];  preprocess(arr N left right);    int L = 0;  int R = 2;    if (isSubarrayMountainForm(arr left   right L R))  Console.WriteLine('Subarray is in ' +   'mountain form');  else  Console.WriteLine('Subarray is not ' +   'in mountain form');    L = 1;  R = 3;    if (isSubarrayMountainForm(arr left   right L R))  Console.WriteLine('Subarray is in ' +   'mountain form');  else  Console.WriteLine('Subarray is not ' +   'in mountain form');  } } // This code is contributed by aj_36 
JavaScript
<script>  // Javascript program to check whether   // a subarray is in mountain   // form or not    // Utility method to construct   // left and right array  function preprocess(arr N left right)  {  // initialize first left   // index as that index only  left[0] = 0;  let lastIncr = 0;    for (let i = 1; i < N; i++)  {  // if current value is   // greater than previous  // update last increasing  if (arr[i] > arr[i - 1])  lastIncr = i;  left[i] = lastIncr;  }    // initialize last right   // index as that index only  right[N - 1] = N - 1;  let firstDecr = N - 1;    for (let i = N - 2; i >= 0; i--)  {  // if current value is   // greater than next  // update first decreasing  if (arr[i] > arr[i + 1])  firstDecr = i;  right[i] = firstDecr;  }  }    // method returns true if  // arr[L..R] is in mountain form  function isSubarrayMountainForm(arr left right L R)  {  // return true only if right at   // starting range is greater   // than left at ending range  return (right[L] >= left[R]);  }    let arr = [2 3 2 4 4 6 3 2];  let N = arr.length;  let left = new Array(N);  let right = new Array(N);  preprocess(arr N left right);  let L = 0;  let R = 2;  if (isSubarrayMountainForm(arr left right L R))  document.write('Subarray is in ' + 'mountain form' + '
'
); else document.write('Subarray is not ' + 'in mountain form' + '
'
); L = 1; R = 3; if (isSubarrayMountainForm(arr left right L R)) document.write('Subarray is in ' + 'mountain form'); else document.write('Subarray is not ' + 'in mountain form'); </script>
    Kimenet:
Subarray is in mountain form Subarray is not in mountain form
    Komplexitáselemzés: 
      Időbeli összetettség:On). 
      Csak két bejárásra van szükség, így az időbonyolultság O(n).A tér összetettsége:On). 
      Két extra n hosszúságú térre van szükség, így a tér összetettsége O(n).


 

Kvíz létrehozása