logo

Komplex számok Pythonban | 2. halmaz (fontos függvények és állandók)

Bevezetés a python komplex számokba: Komplex számok Pythonban | 1. készlet (Bevezetés) Ebben a cikkben még néhány fontosabb függvényt és állandót tárgyalunk. Műveletek komplex számokkal : 1. exp() :- Ez a függvény a kitevő az argumentumában említett komplex számból. 2. log(xb) :- Ez a függvény a x logaritmikus értéke a b bázissal both mentioned in its arguments. If base is not specified natural log of x is returned. Python
# Python code to demonstrate the working of  # exp() log() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z = complex(x y); # printing exponent of complex number print ('The exponent of complex number is : ' end='') print (cmath.exp(z)) # printing log form of complex number print ('The log(base 10) of complex number is : ' end='') print (cmath.log(z10)) 
Output:
The exponent of complex number is : (1.4686939399158851+2.2873552871788423j) The log(base 10) of complex number is : (0.15051499783199057+0.3410940884604603j) 
  3. log10() :- Ez a függvény a rönk alap 10 komplex számról. 4. sqrt() :- Ez kiszámítja a négyzetgyök of a complex number. Python
# Python code to demonstrate the working of  # log10() sqrt() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 # converting x and y into complex number z = complex(x y); # printing log10 of complex number print ('The log10 of complex number is : ' end='') print (cmath.log10(z)) # printing square root form of complex number print ('The square root of complex number is : ' end='') print (cmath.sqrt(z)) 
Output:
The log10 of complex number is : (0.15051499783199057+0.3410940884604603j) The square root of complex number is : (1.09868411346781+0.45508986056222733j) 
  5. végtelen() :- Visszatér igaz, ha valós és képzeletbeli rész is komplex számból vannak véges egyébként hamis értéket ad vissza. 6. Neked() :- Visszatér igaz, ha valós vagy képzeletbeli rész komplex számból van/vannak végtelen egyébként hamis értéket ad vissza. 7. isnan() :- Igazat ad vissza, ha akár valós, akár képzeletbeli rész komplex számból az NaN else returns false. Python
# Python code to demonstrate the working of  # isnan() isinf() isfinite() # importing 'cmath' for complex number operations import cmath import math # Initializing real numbers x = 1.0 y = 1.0 a = math.inf b = math.nan # converting x and y into complex number z = complex(xy); # converting x and a into complex number w = complex(xa); # converting x and b into complex number v = complex(xb); # checking if both numbers are finite if cmath.isfinite(z): print ('Complex number is finite') else : print ('Complex number is infinite') # checking if either number is/are infinite if cmath.isinf(w): print ('Complex number is infinite') else : print ('Complex number is finite') # checking if either number is/are infinite if cmath.isnan(v): print ('Complex number is NaN') else : print ('Complex number is not NaN') 
Output:
Complex number is finite Complex number is infinite Complex number is NaN 
  Állandók A cmath modulban két konstans van definiálva "pi" amely visszaadja a pi számértékét. A második az 'és' which returns the numerical value of exponent. Python
# Python code to demonstrate the working of  # pi and e  # importing 'cmath' for complex number operations import cmath import math # printing the value of pi  print ('The value of pi is : ' end='') print (cmath.pi) # printing the value of e print ('The value of exponent is : ' end='') print (cmath.e) 
Output:
The value of pi is : 3.141592653589793 The value of exponent is : 2.718281828459045 
Komplex számok Pythonban | 3. halmaz (trigonometrikus és hiperbolikus függvények)