Előfeltételek: Grundy számok/számok és MEX
Már láthattuk a 2. szettben (https://www.geeksforgeeks.org/dsa/combinatorial-gameory-et-et-2-game-nim/), hogy megtalálhatjuk, ki nyeri a NIM játékát anélkül, hogy ténylegesen játékot játszana.
Tegyük fel, hogy egy kicsit megváltoztatjuk a klasszikus NIM játékot. Ezúttal minden játékos csak 1 2 vagy 3 köveket távolíthat el (és nem olyan számú kövt, mint a NIM klasszikus játékában). Megjósolhatjuk, ki nyer?
Igen, a Sprague-Grundy tétel segítségével megjósolhatjuk a győztest.
Mi a Sprague-Grundy tétel?
Tegyük fel, hogy van egy összetett játék (egynél több aljáték), amely N aljátékból és két A és B játékosból áll, majd a Sprague-Grundy tétel azt mondja, hogy ha mind a, mind B optimálisan játsszon (azaz nem hibáznak), akkor a játékos első induló játékosa garantált, ha a játék elején az egyes alsó részekben az egyes alsó részek száma nem-Zero. Ellenkező esetben, ha az XOR nullára értékeli, akkor az A játékos határozottan elveszik.
ábécé számokként
Hogyan lehet alkalmazni a Sprague Grundy tételét?
Alkalmazhatjuk a sprague-grundy tételt bármelyikben pártatlan játék és oldja meg. Az alapvető lépéseket a következőképpen kell felsorolni:
- Törje be a kompozit játékot aljátékokra.
- Ezután minden aljátékhoz számolja ki a Grundy számot abban a helyzetben.
- Ezután számolja ki az összes kiszámított Grundy szám XOR -ját.
- Ha az XOR-érték nem nulla, akkor az a játékos, aki a fordulatot (első játékos) fogja elérni, megnyeri másként, hogy elveszítse, bármi is legyen.
Példa játék: A játék 3 4 és 5 kövvel rendelkező 3 cölöpökkel kezdődik, és a lejátszónak bármilyen pozitív számú kövt vehet fel, csak 3 -ig a cölöpök bármelyikétől [feltéve, hogy a halomnak annyi köve van]. Az utolsó játékos, aki mozog, nyer. Melyik játékos nyeri a játékot, feltételezve, hogy mindkét játékos optimálisan játszik?
Hogyan lehet megmondani, ki nyer a Sprague-Grundy tétel alkalmazásával?
Mint láthatjuk, hogy ez a játék önmagában több aljátékból áll.
Első lépés: Az aljátékok minden cölöpnek tekinthetők.
Második lépés: Az alábbi táblázatból látjuk, hogy
Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1
Már láttuk, hogyan lehet kiszámítani ennek a játéknak a Grundy számát a előző cikk.
Harmadik lépés: A XOR 3 0 1 = 2
Negyedik lépés: Mivel az XOR nem nulla szám, tehát elmondhatjuk, hogy az első játékos nyer.
Az alábbiakban bemutatjuk a 4 lépés feletti programot.
jpa vs hibernateC++
/* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ #include using namespace std; /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) { int Mex = 0; while (Set.find(Mex) != Set.end()) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); unordered_set<int> Set; // A Hash Table for (int i=1; i<=3; i++) Set.insert (calculateGrundy (n-i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i=1; i<=n-1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) printf('Player 1 will winn'); else printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) printf('Player 2 will winn'); else printf('Player 1 will winn'); } return; } // Driver program to test above functions int main() { // Test Case 1 int piles[] = {3 4 5}; int n = sizeof(piles)/sizeof(piles[0]); // Find the maximum element int maximum = *max_element(piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ return (0); }
Java import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) { int Mex = 0; while (Set.contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<Integer> Set = new HashSet<Integer>(); for (int i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[] int Grundy[] int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) System.out.printf('Player 1 will winn'); else System.out.printf('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) System.out.printf('Player 2 will winn'); else System.out.printf('Player 1 will winn'); } return; } // Driver code public static void main(String[] args) { // Test Case 1 int piles[] = {3 4 5}; int n = piles.length; // Find the maximum element int maximum = Arrays.stream(piles).max().getAsInt(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy[] = new int[maximum + 1]; Arrays.fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by PrinciRaj1992
Python3 ''' Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n' def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1 piles = [ 3 4 5 ] n = len(piles) # Find the maximum element maximum = max(piles) # An array to cache the sub-problems so that # re-computation of same sub-problems is avoided Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); ''' Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56
C# using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG { /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) { int Mex = 0; while (Set.Contains(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table HashSet<int> Set = new HashSet<int>(); for (int i = 1; i <= 3; i++) Set.Add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles int []Grundy int n) { int xorValue = Grundy[piles[0]]; for (int i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) Console.Write('Player 1 will winn'); else Console.Write('Player 2 will winn'); } else { if (whoseTurn == PLAYER1) Console.Write('Player 2 will winn'); else Console.Write('Player 1 will winn'); } return; } // Driver code static void Main() { // Test Case 1 int []piles = {3 4 5}; int n = piles.Length; // Find the maximum element int maximum = piles.Max(); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int []Grundy = new int[maximum + 1]; Array.Fill(Grundy -1); // Calculate Grundy Value of piles[i] and store it for (int i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ } } // This code is contributed by mits
JavaScript <script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) { let Mex = 0; while (Set.has(Mex)) Mex++; return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) { Grundy[0] = 0; Grundy[1] = 1; Grundy[2] = 2; Grundy[3] = 3; if (Grundy[n] != -1) return (Grundy[n]); // A Hash Table let Set = new Set(); for (let i = 1; i <= 3; i++) Set.add(calculateGrundy (n - i Grundy)); // Store the result Grundy[n] = calculateMex (Set); return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) { let xorValue = Grundy[piles[0]]; for (let i = 1; i <= n - 1; i++) xorValue = xorValue ^ Grundy[piles[i]]; if (xorValue != 0) { if (whoseTurn == PLAYER1) document.write('Player 1 will win
'); else document.write('Player 2 will win
'); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'); else document.write('Player 1 will win
'); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>
Kimenet:
Player 1 will win
Idő bonyolultsága: O (n^2), ahol n a halomban lévő kövek maximális száma.
Tér komplexitása: O (n) Mivel a Grundy tömböt használják az alproblémák eredményeinek tárolására, hogy elkerüljék a redundáns számításokat, és o (n) helyet igényel.
Hivatkozások:
https://en.wikipedia.org/wiki/sprague%e2%80%93grundy_theorem
Gyakorlat az olvasóknak: Fontolja meg az alábbi játékot.
Egy játékot két játékos játszik, n egész számú A1 a2 .. an. Az ő fordulóján egy játékos kiválasztja az egész számot, amely elválasztja azt 2 3 vagy 6 -mal, majd felveszi a padlót. Ha az egész szám 0 lesz, akkor eltávolítják. Az utolsó játékos, aki mozog, nyer. Melyik játékos nyeri a játékot, ha mindkét játékos optimálisan játszik?
Tipp: Lásd a 3. példát előző cikk.