Már megbeszéltük a Bináris szálú bináris fa .
A bináris menetes fába történő beillesztés hasonló a bináris fába történő beszúráshoz, de minden elem beillesztése után módosítanunk kell a szálakat.
A bináris szálas csomópont C ábrázolása:
struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; }; A következő magyarázatban figyelembe vettük Bináris keresőfa (BST) a beszúráshoz, mivel a beillesztést bizonyos szabályok határozzák meg a BST-ben.
Hadd tmp legyen az újonnan beillesztett csomópont . A beillesztés során három eset lehet:
1. eset: Beszúrás üres fába
A tmp bal és jobb oldali mutatói NULL-ra lesznek állítva, és az új csomópont lesz a gyökér.
mi az a monitor
root = tmp; tmp -> left = NULL; tmp -> right = NULL;
2. eset: Amikor új csomópont került be a bal oldali gyermekként
A csomópont megfelelő helyére történő beillesztése után a bal és jobb szálakat a sorrend elődjére, illetve utódjára kell mutatnunk. A csomópont, ami volt rend utódja . Tehát az új csomópont bal és jobb szála lesz-
prioritási sor
tmp -> left = par ->left; tmp -> right = par;
A beszúrás előtt a szülő bal mutatója egy szál volt, de beillesztés után az új csomópontra mutató hivatkozás lesz.
par -> lthread = false; par -> left = temp;
A következő példa egy csomópontot a szülő bal oldali gyermekeként szúr be.

A 13 beillesztése után
gépirat mindegyikhez

A 14 elődje a 13 elődjévé válik, így a bal szál 13 pontról 10-re.
A 13 utódja a 14, tehát a 13 pontos jobb oldali szál a bal gyermekhez képest, ami 13.
A 14-es bal mutató nem egy szál, hanem a bal oldali gyermekre mutat, amely 13.
3. eset: Amikor az új csomópont a megfelelő gyermekként kerül beillesztésre
A tmp szülője a rendes elődje. Az a csomópont, amely a szülő sorrendi utódja volt, most ennek a tmp csomópontnak a rendes utódja. Tehát az új csomópont bal és jobb szála lesz-
tmp -> left = par; tmp -> right = par -> right;
A beillesztés előtt a szülő jobb oldali mutatója egy szál volt, de beillesztés után az új csomópontra mutató hivatkozás lesz.
par -> rthread = false; par -> right = tmp;
A következő példa azt mutatja be, hogy egy csomópont a szülőjének megfelelő gyermekeként kerül beillesztésre.

hrithik roshan
15 beillesztés után

A 14 utódja a 15 utódja lesz, tehát a 15 pont jobb szála 16-hoz
A 15 elődje a 14, tehát a bal szál 15 pontból 14-re.
A 14-es jobb oldali mutató nem egy szál, hanem a 15-ös jobb gyermekre mutat.
C++ implementáció új csomópont beszúrásához a Threaded Binary Search Tree-ba:
Mint szabványos BST betét a kulcsértéket keressük a fában. Ha a kulcs már jelen van, akkor visszatérünk, ellenkező esetben az új kulcsot beszúrjuk arra a pontra, ahol a keresés véget ér. A BST-ben a keresés akkor fejeződik be, amikor megtaláljuk a kulcsot, vagy amikor elérjük a NULL bal vagy jobb mutatót. Itt minden bal és jobb NULL mutatót szálak váltanak fel, kivéve az első csomópont bal mutatóját és az utolsó csomópont jobb oldali mutatóját. Tehát itt a keresés sikertelen lesz, ha elérünk egy NULL mutatót vagy egy szálat.
Végrehajtás:
C++// Insertion in Threaded Binary Search Tree. #include using namespace std; struct Node { struct Node *left *right; int info; // False if left pointer points to predecessor // in Inorder Traversal bool lthread; // False if right pointer points to successor // in Inorder Traversal bool rthread; }; // Insert a Node in Binary Threaded Tree struct Node *insert(struct Node *root int ikey) { // Searching for a Node with given value Node *ptr = root; Node *par = NULL; // Parent of key to be inserted while (ptr != NULL) { // If key already exists return if (ikey == (ptr->info)) { printf('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr->info) { if (ptr -> lthread == false) ptr = ptr -> left; else break; } // Moving on right subtree. else { if (ptr->rthread == false) ptr = ptr -> right; else break; } } // Create a new node Node *tmp = new Node; tmp -> info = ikey; tmp -> lthread = true; tmp -> rthread = true; if (par == NULL) { root = tmp; tmp -> left = NULL; tmp -> right = NULL; } else if (ikey < (par -> info)) { tmp -> left = par -> left; tmp -> right = par; par -> lthread = false; par -> left = tmp; } else { tmp -> left = par; tmp -> right = par -> right; par -> rthread = false; par -> right = tmp; } return root; } // Returns inorder successor using rthread struct Node *inorderSuccessor(struct Node *ptr) { // If rthread is set we can quickly find if (ptr -> rthread == true) return ptr->right; // Else return leftmost child of right subtree ptr = ptr -> right; while (ptr -> lthread == false) ptr = ptr -> left; return ptr; } // Printing the threaded tree void inorder(struct Node *root) { if (root == NULL) printf('Tree is empty'); // Reach leftmost node struct Node *ptr = root; while (ptr -> lthread == false) ptr = ptr -> left; // One by one print successors while (ptr != NULL) { printf('%d 'ptr -> info); ptr = inorderSuccessor(ptr); } } // Driver Program int main() { struct Node *root = NULL; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); return 0; }
Java // Java program Insertion in Threaded Binary Search Tree. import java.util.*; public class solution { static class Node { Node left right; int info; // False if left pointer points to predecessor // in Inorder Traversal boolean lthread; // False if right pointer points to successor // in Inorder Traversal boolean rthread; }; // Insert a Node in Binary Threaded Tree static Node insert( Node root int ikey) { // Searching for a Node with given value Node ptr = root; Node par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { System.out.printf('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr . lthread == false) ptr = ptr . left; else break; } // Moving on right subtree. else { if (ptr.rthread == false) ptr = ptr . right; else break; } } // Create a new node Node tmp = new Node(); tmp . info = ikey; tmp . lthread = true; tmp . rthread = true; if (par == null) { root = tmp; tmp . left = null; tmp . right = null; } else if (ikey < (par . info)) { tmp . left = par . left; tmp . right = par; par . lthread = false; par . left = tmp; } else { tmp . left = par; tmp . right = par . right; par . rthread = false; par . right = tmp; } return root; } // Returns inorder successor using rthread static Node inorderSuccessor( Node ptr) { // If rthread is set we can quickly find if (ptr . rthread == true) return ptr.right; // Else return leftmost child of right subtree ptr = ptr . right; while (ptr . lthread == false) ptr = ptr . left; return ptr; } // Printing the threaded tree static void inorder( Node root) { if (root == null) System.out.printf('Tree is empty'); // Reach leftmost node Node ptr = root; while (ptr . lthread == false) ptr = ptr . left; // One by one print successors while (ptr != null) { System.out.printf('%d 'ptr . info); ptr = inorderSuccessor(ptr); } } // Driver Program public static void main(String[] args) { Node root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); } } //contributed by Arnab Kundu // This code is updated By Susobhan Akhuli
Python3 # Insertion in Threaded Binary Search Tree. class newNode: def __init__(self key): # False if left pointer points to # predecessor in Inorder Traversal self.info = key self.left = None self.right =None self.lthread = True # False if right pointer points to # successor in Inorder Traversal self.rthread = True # Insert a Node in Binary Threaded Tree def insert(root ikey): # Searching for a Node with given value ptr = root par = None # Parent of key to be inserted while ptr != None: # If key already exists return if ikey == (ptr.info): print('Duplicate Key !') return root par = ptr # Update parent pointer # Moving on left subtree. if ikey < ptr.info: if ptr.lthread == False: ptr = ptr.left else: break # Moving on right subtree. else: if ptr.rthread == False: ptr = ptr.right else: break # Create a new node tmp = newNode(ikey) if par == None: root = tmp tmp.left = None tmp.right = None elif ikey < (par.info): tmp.left = par.left tmp.right = par par.lthread = False par.left = tmp else: tmp.left = par tmp.right = par.right par.rthread = False par.right = tmp return root # Returns inorder successor using rthread def inorderSuccessor(ptr): # If rthread is set we can quickly find if ptr.rthread == True: return ptr.right # Else return leftmost child of # right subtree ptr = ptr.right while ptr.lthread == False: ptr = ptr.left return ptr # Printing the threaded tree def inorder(root): if root == None: print('Tree is empty') # Reach leftmost node ptr = root while ptr.lthread == False: ptr = ptr.left # One by one print successors while ptr != None: print(ptr.infoend=' ') ptr = inorderSuccessor(ptr) # Driver Code if __name__ == '__main__': root = None root = insert(root 20) root = insert(root 10) root = insert(root 30) root = insert(root 5) root = insert(root 16) root = insert(root 14) root = insert(root 17) root = insert(root 13) inorder(root) # This code is contributed by PranchalK
C# using System; // C# program Insertion in Threaded Binary Search Tree. public class solution { public class Node { public Node left right; public int info; // False if left pointer points to predecessor // in Inorder Traversal public bool lthread; // False if right pointer points to successor // in Inorder Traversal public bool rthread; } // Insert a Node in Binary Threaded Tree public static Node insert(Node root int ikey) { // Searching for a Node with given value Node ptr = root; Node par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { Console.Write('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr.lthread == false) { ptr = ptr.left; } else { break; } } // Moving on right subtree. else { if (ptr.rthread == false) { ptr = ptr.right; } else { break; } } } // Create a new node Node tmp = new Node(); tmp.info = ikey; tmp.lthread = true; tmp.rthread = true; if (par == null) { root = tmp; tmp.left = null; tmp.right = null; } else if (ikey < (par.info)) { tmp.left = par.left; tmp.right = par; par.lthread = false; par.left = tmp; } else { tmp.left = par; tmp.right = par.right; par.rthread = false; par.right = tmp; } return root; } // Returns inorder successor using rthread public static Node inorderSuccessor(Node ptr) { // If rthread is set we can quickly find if (ptr.rthread == true) { return ptr.right; } // Else return leftmost child of right subtree ptr = ptr.right; while (ptr.lthread == false) { ptr = ptr.left; } return ptr; } // Printing the threaded tree public static void inorder(Node root) { if (root == null) { Console.Write('Tree is empty'); } // Reach leftmost node Node ptr = root; while (ptr.lthread == false) { ptr = ptr.left; } // One by one print successors while (ptr != null) { Console.Write('{0:D} 'ptr.info); ptr = inorderSuccessor(ptr); } } // Driver Program public static void Main(string[] args) { Node root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); } } // This code is contributed by Shrikant13
JavaScript <script> // javascript program Insertion in Threaded Binary Search Tree. class Node { constructor(){ this.left = null this.right = null; this.info = 0; // False if left pointer points to predecessor // in Inorder Traversal this.lthread = false; // False if right pointer points to successor // in Inorder Traversal this.rthread = false; } } // Insert a Node in Binary Threaded Tree function insert(root ikey) { // Searching for a Node with given value var ptr = root; var par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { document.write('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr.lthread == false) ptr = ptr.left; else break; } // Moving on right subtree. else { if (ptr.rthread == false) ptr = ptr.right; else break; } } // Create a new node var tmp = new Node(); tmp.info = ikey; tmp.lthread = true; tmp.rthread = true; if (par == null) { root = tmp; tmp.left = null; tmp.right = null; } else if (ikey < (par.info)) { tmp.left = par.left; tmp.right = par; par.lthread = false; par.left = tmp; } else { tmp.left = par; tmp.right = par.right; par.rthread = false; par.right = tmp; } return root; } // Returns inorder successor using rthread function inorderSuccessor(ptr) { // If rthread is set we can quickly find if (ptr.rthread == true) return ptr.right; // Else return leftmost child of right subtree ptr = ptr.right; while (ptr.lthread == false) ptr = ptr.left; return ptr; } // Printing the threaded tree function inorder(root) { if (root == null) document.write('Tree is empty'); // Reach leftmost node var ptr = root; while (ptr.lthread == false) ptr = ptr.left; // One by one print successors while (ptr != null) { document.write(ptr.info+' '); ptr = inorderSuccessor(ptr); } } // Driver Program var root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); // This code contributed by aashish1995 </script>
Kimenet
5 10 13 14 16 17 20 30
Időbonyolultság: O(log N)
A tér összetettsége: O(1) mivel nem használnak több helyet.
r c nyelven
Kvíz létrehozása