logo

A legkisebb szám az adott számjegyű számmal és összeggel

Próbálja ki a GFG gyakorlaton ' title=

Két egész számot adott S és D Keresse meg a legkisebb lehetséges szám, amely pontosan rendelkezik D számjegyek és a számjegyek összege egyenlő S -
Visszaadja a számot a húr - Ha nem létezik ilyen szám visszatérés '-1' -

Példák:



java tömb rendezve

Bemenet: s = 9 d = 2
Kimenet: 18
Magyarázat: A 18 a lehető legkisebb szám, a számjegyek összegével = 9 és az összes számjegy = 2.

Bemenet: S = 20 d = 3
Kimenet: 299
Magyarázat: A 299 a lehető legkisebb szám, a számjegyek összegével = 20 és az összes számjegy = 3.

Bemenet: s = 1 d = 1
Kimenet: 1
Magyarázat: Az 1 a lehető legkisebb szám, a számjegyek összegével = 1 és az összes számjegy = 1.



Tartalomjegyzék

[Brute -erő megközelítés] iteráció egymás után - o (d*(10^d)) idő és o (1) tér

Mivel a számok szekvenciálisak a brutális erő megközelítés iterálja a legkisebb D számjegyszám a legnagyobb mindegyik ellenőrzése. Minden számra kiszámítjuk a számjegyeinek összege és adja vissza az első érvényes mérkőzést, biztosítva a lehető legkisebb számot. Ha nincs érvényes szám, akkor visszatérünk '-1' -

shehzad poonawala
C++
// C++ program to find the smallest d-digit // number with the given sum using  // a brute force approach #include    using namespace std; string smallestNumber(int s int d) {    // The smallest d-digit number is 10^(d-1)  int start = pow(10 d - 1);    // The largest d-digit number is 10^d - 1  int end = pow(10 d) - 1;  // Iterate through all d-digit numbers  for (int num = start; num <= end; num++) {    int sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x /= 10;  }  // If sum matches return the number  // as a string  if (sum == s) {  return to_string(num);  }  }  // If no valid number is found return '-1'  return '-1'; } // Driver Code int main() {    int s = 9 d = 2;    cout << smallestNumber(s d) << endl;  return 0; } 
Java
// Java program to find the smallest d-digit // number with the given sum using  // a brute force approach import java.util.*; class GfG {    static String smallestNumber(int s int d) {    // The smallest d-digit number is 10^(d-1)  int start = (int) Math.pow(10 d - 1);    // The largest d-digit number is 10^d - 1  int end = (int) Math.pow(10 d) - 1;  // Iterate through all d-digit numbers  for (int num = start; num <= end; num++) {    int sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x /= 10;  }  // If sum matches return the number  // as a string  if (sum == s) {  return Integer.toString(num);  }  }  // If no valid number is found return '-1'  return '-1';  }  // Driver Code  public static void main(String[] args) {    int s = 9 d = 2;    System.out.println(smallestNumber(s d));  } } 
Python
# Python program to find the smallest d-digit # number with the given sum using  # a brute force approach def smallestNumber(s d): # The smallest d-digit number is 10^(d-1) start = 10**(d - 1) # The largest d-digit number is 10^d - 1 end = 10**d - 1 # Iterate through all d-digit numbers for num in range(start end + 1): sum_digits = 0 x = num # Calculate sum of digits while x > 0: sum_digits += x % 10 x //= 10 # If sum matches return the number # as a string if sum_digits == s: return str(num) # If no valid number is found return '-1' return '-1' # Driver Code if __name__ == '__main__': s d = 9 2 print(smallestNumber(s d)) 
C#
// C# program to find the smallest d-digit // number with the given sum using  // a brute force approach using System; class GfG {    static string smallestNumber(int s int d) {    // The smallest d-digit number is 10^(d-1)  int start = (int)Math.Pow(10 d - 1);    // The largest d-digit number is 10^d - 1  int end = (int)Math.Pow(10 d) - 1;  // Iterate through all d-digit numbers  for (int num = start; num <= end; num++) {    int sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x /= 10;  }  // If sum matches return the number  // as a string  if (sum == s) {  return num.ToString();  }  }  // If no valid number is found return '-1'  return '-1';  }  // Driver Code  public static void Main() {    int s = 9 d = 2;    Console.WriteLine(smallestNumber(s d));  } } 
JavaScript
// JavaScript program to find the smallest d-digit // number with the given sum using  // a brute force approach function smallestNumber(s d) {    // The smallest d-digit number is 10^(d-1)  let start = Math.pow(10 d - 1);    // The largest d-digit number is 10^d - 1  let end = Math.pow(10 d) - 1;  // Iterate through all d-digit numbers  for (let num = start; num <= end; num++) {    let sum = 0 x = num;  // Calculate sum of digits  while (x > 0) {  sum += x % 10;  x = Math.floor(x / 10);  }  // If sum matches return the number  // as a string  if (sum === s) {  return num.toString();  }  }  // If no valid number is found return '-1'  return '-1'; } // Driver Code let s = 9 d = 2; console.log(smallestNumber(s d)); 

Kibocsátás
18 

[Várt megközelítés] kapzsi technika alkalmazásával - o (d) idő és o (1) tér

A megközelítés biztosítja a baloldali számjegyet nem nulla Tehát mi 1 -es tartalék érte, és ossza el a fennmaradó összeget Jobbról balra A lehető legkisebb szám kialakításához. A kapzsi megközelítés segít a lehető legnagyobb értékek (legfeljebb 9) elhelyezésében a jobboldali pozíciók hogy a szám kicsi maradjon.



A fenti ötlet megvalósításához szükséges lépések:

  • Ellenőrizze a korlátozásokat a érvényes összeg Készíthető a felhasználásával D számjegyek különben visszatér '-1' -
  • Inicializál eredmény mint egy karakterlánc D '0 -ek és 1 -es tartalék a baloldali számjegy redukcióval s 1 -
  • Átjár Jobbról balra és helyezze a A lehető legnagyobb számjegy (<= 9) A frissítés közben S ennek megfelelően.
  • Ha S<= 9 Helyezze értékét az aktuális helyzetbe, és állítsa be s = 0 A további frissítések leállításához.
  • Hozzárendelje a baloldali számjegy hozzáadva a fennmaradó s annak biztosítása érdekében, hogy megmaradjon nulla -
  • Konvertálja a eredmény karakterlánc a szükséges formátumhoz és visszatérés Ez a végső kimenet.
C++
// C++ program to find the smallest d-digit  // number with the given sum using // Greedy Technique #include    using namespace std; string smallestNumber(int s int d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  string result(d '0');     // Reserve 1 for the leftmost digit  s--;   // Fill digits from right to left  for (int i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = '0' + s;  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = '1' + s;    return result; } // Driver Code int main() {    int s = 9 d = 2;    cout << smallestNumber(s d) << endl;  return 0; } 
Java
// Java program to find the smallest d-digit  // number with the given sum using // Greedy Technique import java.util.*; class GfG {    static String smallestNumber(int s int d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  char[] result = new char[d];  Arrays.fill(result '0');    // Reserve 1 for the leftmost digit  s--;  // Fill digits from right to left  for (int i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = (char) ('0' + s);  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = (char) ('1' + s);    return new String(result);  }  // Driver Code  public static void main(String[] args) {    int s = 9 d = 2;    System.out.println(smallestNumber(s d));  } } 
Python
# Python program to find the smallest d-digit  # number with the given sum using # Greedy Technique def smallestNumber(s d): # If sum is too small or too large  # for d digits if s < 1 or s > 9 * d: return '-1' result = ['0'] * d # Reserve 1 for the leftmost digit s -= 1 # Fill digits from right to left for i in range(d - 1 0 -1): # Place the largest possible value <= 9 if s > 9: result[i] = '9' s -= 9 else: result[i] = str(s) s = 0 # Place the leftmost digit ensuring # it's non-zero result[0] = str(1 + s) return ''.join(result) # Driver Code if __name__ == '__main__': s d = 9 2 print(smallestNumber(s d)) 
C#
// C# program to find the smallest d-digit  // number with the given sum using // Greedy Technique using System; class GfG {  static string smallestNumber(int s int d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  char[] result = new char[d];  Array.Fill(result '0');  // Reserve 1 for the leftmost digit  s--;  // Fill digits from right to left  for (int i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = (char) ('0' + s);  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = (char) ('1' + s);    return new string(result);  }  // Driver Code  static void Main() {    int s = 9 d = 2;    Console.WriteLine(smallestNumber(s d));  } } 
JavaScript
// JavaScript program to find the smallest d-digit  // number with the given sum using // Greedy Technique function smallestNumber(s d) {    // If sum is too small or too large   // for d digits  if (s < 1 || s > 9 * d) {  return '-1';  }  let result = Array(d).fill('0');   // Reserve 1 for the leftmost digit  s--;  // Fill digits from right to left  for (let i = d - 1; i > 0; i--) {    // Place the largest possible value <= 9  if (s > 9) {  result[i] = '9';  s -= 9;  } else {  result[i] = String(s);  s = 0;  }  }  // Place the leftmost digit ensuring  // it's non-zero  result[0] = String(1 + s);    return result.join(''); } // Driver Code let s = 9 d = 2; console.log(smallestNumber(s d)); 

Kibocsátás
18